Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biosensors (Basel) ; 12(7)2022 Jun 27.
Article in English | MEDLINE | ID: covidwho-1963721

ABSTRACT

Two-dimensional carbon nanomaterials have been commonly employed in the field of biosensors to improve their sensitivity/limits of detection and shorten the analysis time. These nanomaterials act as efficient transducers because of their unique characteristics, such as high surface area and optical, electrical, and magnetic properties, which in turn have been exploited to create simple, quick, and low-cost biosensing platforms. In this review, graphene and two-dimensional carbon material-based fluorescent biosensors are covered between 2010 and 2021, for the detection of different human viruses. This review specifically focuses on the new developments in graphene and two-dimensional carbon nanomaterials for fluorescent biosensing based on the Förster resonance energy transfer (FRET) mechanism. The high-efficiency quenching capability of graphene via the FRET mechanism enhances the fluorescent-based biosensors. The review provides a comprehensive reference for the different types of carbon nanomaterials employed for the detection of viruses such as Rotavirus, Ebola virus, Influenza virus H3N2, HIV, Hepatitis C virus (HCV), and Hepatitis B virus (HBV). This review covers the various multiplexing detection technologies as a new direction in the development of biosensing platforms for virus detection. At the end of the review, the different challenges in the use of fluorescent biosensors, as well as some insights into how to overcome them, are highlighted.


Subject(s)
Biosensing Techniques , Graphite , Nanostructures , Viruses , Biosensing Techniques/methods , Carbon , Humans
2.
ACS Omega ; 7(21): 17555-17562, 2022 May 31.
Article in English | MEDLINE | ID: covidwho-1927059

ABSTRACT

Despite progress in fighting infectious diseases, human pathogenesis and death caused by infectious diseases remain relatively high worldwide exceeding that of cancer and cardiovascular diseases. Human adenovirus (HAdV) infects cells of the upper respiratory tract causing flu-like symptoms that are accompanied by pain and inflammation. Diagnosis of HAdV is commonly achieved by conventional methods such as viral cultures, immunoassays, and polymerase chain reaction (PCR) techniques. However, there are a variety of problems with conventional methods including slow isolation and propagation, inhibition by neutralizing antibodies, low sensitivity of immunoassays, and the diversity of HAdV strains for the PCR technique. Herein, we report the development and evaluation of a novel, simple, and reliable nanobased immunosensing technique for the rapid detection of human adenoviruses (HAdVs) that cause eye infections. This rapid and low-cost assay can be used for screening and quantitative tests with a detection limit of 102 pfu/mL in less than 2 min. The sensing platform is based on a sandwich assay that can detect HAdVs visually by a color change. Sensor specificity was demonstrated using other common viral antigens, including Flu A, Flu B, coronavirus (COV), and Middle East respiratory syndrome coronavirus (MERS COV). This cotton-based testing device potentially exhibits many of the desired characteristics of a suitable point-of-care and portable test, which can be carried out by nurses or clinicians especially for low-resource settings.

3.
Biosensors (Basel) ; 12(4)2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1785523

ABSTRACT

Simple, timely, and precise detection of SARS-CoV-2 in clinical samples and contaminated surfaces aids in lowering attendant morbidity/mortality related to this infectious virus. Currently applied diagnostic techniques depend on a timely laboratory report following PCR testing. However, the application of these tests is associated with inherent shortcomings due to the need for trained personnel, long-time centralized laboratories, and expensive instruments. Therefore, there is an interest in developing biosensing diagnostic frontiers that can help in eliminating these shortcomings with a relatively economical, easy-to-use, well-timed, precise and sensitive technology. This study reports the development of fabricated Q-tips designed to qualitatively and semi-quantitatively detect SARS-CoV-2 in clinical samples and contaminated non-absorbable surfaces. This colorimetric sensor is engineered to sandwich SARS-CoV-2 spike protein between the lactoferrin general capturing agent and the complementary ACE2-labeled receptor. The ACE2 receptor is decorated with an orange-colored polymeric nanoparticle to generate an optical visual signal upon pairing with the SARS-CoV-2 spike protein. This colorimetric change of the Q-tip testing zone from white to orange confirms a positive result. The visual detection limit of the COVID-19 engineered colorimetric Q-tip sensor was 100 pfu/mL within a relatively short turnaround time of 5 min. The linear working range of quantitation was 103-108 pfu/mL. The engineered sensor selectively targeted SARS-CoV-2 spike protein and did not bind to another coronavirus such as MERS-CoV, Flu A, or Flu B present on the contaminated surface. This novel detection tool is relatively cheap to produce and suitable for onsite detection of COVID-19 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19/diagnosis , Humans , Spike Glycoprotein, Coronavirus/analysis
4.
Mikrochim Acta ; 188(6): 199, 2021 05 26.
Article in English | MEDLINE | ID: covidwho-1245646

ABSTRACT

Since the COVID-19 disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) was declared a pandemic, it has spread rapidly, causing one of the most serious outbreaks in the last century. Reliable and rapid diagnostic tests for COVID-19 are crucial to control and manage the outbreak. Here, a label-free square wave voltammetry-based biosensing platform for the detection of SARS-CoV-2 in nasopharyngeal samples is reported. The sensor was constructed on screen-printed carbon electrodes coated with gold nanoparticles. The electrodes were functionalized using 11-mercaptoundecanoic acid (MUA) which was used for the immobilization of an antibody against SARS-CoV-2 nucleocapsid protein (N protein). The binding of the immunosensor with the N protein caused a change in the electrochemical signal. The detection was realised by measuring the change in reduction peak current of a redox couple using square wave voltammetry at 0.04 V versus Ag ref. electrode on the immunosensor upon binding with the N protein. The electrochemical immunosensor showed high sensitivity with a linear range from 1.0 pg.mL-1 to 100 ng.mL-1 and a limit of detection of 0.4 pg.mL-1 for the N protein in PBS buffer pH 7.4. Moreover, the immunosensor did not exhibit significant response with other viruses such as HCoV, MERS-CoV, Flu A and Flu B, indicating the high selectivity of the sensor for SARS-CoV-2. However, cross reactivity of the biosensor with SARS-CoV is indicated, which gives ability of the sensor to detect both SARS-CoV and SARS-CoV-2. The biosensor was successfully applied to detect the SARS-CoV-2 virus in clinical samples showing good correlation between the biosensor response and the RT-PCR cycle threshold values. We believe that the capability of miniaturization, low-cost and fast response of the proposed label-free electrochemical immunosensor will facilitate the point-of-care diagnosis of COVID 19 and help prevent further spread of infection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , Electrochemical Techniques/methods , Immunoassay/methods , SARS-CoV-2/chemistry , Antibodies, Immobilized/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 Testing/instrumentation , Carbon/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Electrochemical Techniques/instrumentation , Electrodes , Fatty Acids/chemistry , Gold/chemistry , Humans , Immunoassay/instrumentation , Limit of Detection , Metal Nanoparticles/chemistry , Nasopharynx/virology , Phosphoproteins/analysis , Phosphoproteins/immunology , Sulfhydryl Compounds/chemistry
5.
Mikrochim Acta ; 188(4): 137, 2021 03 25.
Article in English | MEDLINE | ID: covidwho-1148895

ABSTRACT

The novel corona (SARS-CoV-2) virus causes a global pandemic, which motivates researchers to develop reliable and effective methods for screening and detection of SARS-CoV-2. Though there are several methods available for the diagnosis of SARS-CoV-2 such as RT-PCR and ELSIA, nevertheless, these methods are time-consuming and may not apply at the point of care. In this study, we have developed a specific, sensitive, quantitative and fast detection method for SARS-CoV-2 by fluorescence resonance energy transfer (FRET) assay. The total extracellular protease proteolytic activity from the virus has been used as the biomarker. The specific peptide sequences from the library of 115 dipeptides were identified via changes in the fluorescence signal. The fluorogenic dipeptide substrates have the fluorophore and a quencher at the N- and the C- terminals, respectively. When the protease hydrolyzes the peptide bond between the two specific amino acids, it leads to a significant increase in the fluorescence signals. The specific fluorogenic peptide (H-d) produces a high fluorescence signal. A calibration plot was obtained from the changes in the fluorescence intensity against the different concentrations of the viral protease. The lowest limit of detection of this method was 9.7 ± 3 pfu/mL. The cross-reactivity of the SARS-CoV-2-specific peptide was tested against the MERS-CoV which does not affect the fluorescence signal. A significant change in the fluorescence signal with patient samples indicates that this FRET-based assay might be applied for the diagnosis of SARS-CoV-2 patients. Graphical abstract.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus 3C Proteases/metabolism , Fluorescent Dyes/metabolism , Peptides/metabolism , SARS-CoV-2 , Viral Proteins/metabolism , Animals , Biological Assay , COVID-19/microbiology , Chlorocebus aethiops , Fluorescence Resonance Energy Transfer , Humans , Peptide Library , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells , Viral Plaque Assay
6.
Anal Chem ; 93(3): 1826-1833, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-997756

ABSTRACT

Collection of nasopharyngeal samples using swabs followed by the transfer of the virus into a solution and an RNA extraction step to perform reverse transcription polymerase chain reaction (PCR) is the primary method currently used for the diagnosis of COVID-19. However, the need for several reagents and steps and the high cost of PCR hinder its worldwide implementation to contain the outbreak. Here, we report a cotton-tipped electrochemical immunosensor for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus antigen. Unlike the reported approaches, we integrated the sample collection and detection tools into a single platform by coating screen-printed electrodes with absorbing cotton padding. The immunosensor was fabricated by immobilizing the virus nucleocapsid (N) protein on carbon nanofiber-modified screen-printed electrodes which were functionalized by diazonium electrografting. The detection of the virus antigen was achieved via swabbing followed by competitive assay using a fixed amount of N protein antibody in the solution. A square wave voltammetric technique was used for the detection. The limit of detection for our electrochemical biosensor was 0.8 pg/mL for SARS-CoV-2, indicating very good sensitivity for the sensor. The biosensor did not show significant cross-reactivity with other virus antigens such as influenza A and HCoV, indicating high selectivity of the method. Moreover, the biosensor was successfully applied for the detection of the virus antigen in spiked nasal samples showing excellent recovery percentages. Thus, our electrochemical immunosensor is a promising diagnostic tool for the direct rapid detection of the COVID-19 virus that requires no sample transfer or pretreatment.


Subject(s)
COVID-19/diagnosis , Cotton Fiber , Electrochemical Techniques/methods , Immunoassay/methods , SARS-CoV-2/isolation & purification , Antibodies, Viral/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Carbon/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Electrochemical Techniques/instrumentation , Electrodes , Gossypium/chemistry , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunoassay/instrumentation , Limit of Detection , Nanofibers/chemistry , Phosphoproteins/chemistry , Phosphoproteins/immunology , SARS-CoV-2/immunology
7.
Talanta ; 220: 121392, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-642457

ABSTRACT

COVID-19 pandemic is a serious global health issue today due to the rapid human to human transmission of SARS-CoV-2, a new type of coronavirus that causes fatal pneumonia. SARS -CoV-2 has a faster rate of transmission than other coronaviruses such as SARS and MERS and until now there are no approved specific drugs or vaccines for treatment. Thus, early diagnosis is crucial to prevent the extensive spread of the disease. The reverse transcription-polymerase chain reaction (RT-PCR) is the most routinely used method until now to detect SARS-CoV-2 infections. However, several other faster and accurate assays are being developed for the diagnosis of COVID-19 aiming to control the spread of infection through the identification of patients and immediate isolation. In this review, we will discuss the various detection methods of the SARS-CoV-2 virus including the recent developments in immunological assays, amplification techniques as well as biosensors.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Biosensing Techniques , COVID-19 , COVID-19 Testing , Early Diagnosis , Humans , Immunoassay , Pandemics , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL